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TECHNICAL NOTE 3223

AN ANATYSIS OF SHOCK-WAVE CANCELLATION AND REFLECTION
FOR POROUS WALLS WHICH OBEY AN EXPONENTTAL
MASS-FLOW PRESSURE-DIFFERENCE RELATION

By Joseph M. Spilegel and Phillips J. Tunnell
SUMMARY

Two-dimensional oblique shock-wave theory 1s used to define condi-
tlons for cancellation and reflection of shock waves from porous walls.
An exponential relation between mass flow normal to the walls and pres-
sure differential through the walls ls assumed. A porosity factor is
defined which uniquely determines cancellation conditions and is inde-
pendent of the exponent of the mass-flow pressure-difference relation
but is dependent upon the amount of wall suction. For the reflection
case an approximate explicit solution for the reflected wave strength
1s derived and, in general, is found to be a function of the flow
exponent, the amount of wall suction, and the porosity factor of the
porous medium. It is pointed out that the flow across a curved three-
dimensional shock wave can be related to two-dimensional flow, so that
Information as to the cancellation conditions for three-dimensional
disturbances can be obtained from the analysis.

INTRODUCTION

Porous walls are used in transonic test sections at low supersonic
speeds for the purpose of canceling or attenuating flow dlsturbances
that ordinarily reflect from solid boundaries. These disturbances can
originate from a test model or from extrinsic sources farther upstream.
Two past reports, which deal theoretically with the subJject, neglect
two important factors which reduce their usefulness in the study of
real flows. First, in general, these reports assumed a llnear relation
between the flow normal to the wall and the pressure difference across
the wall, which experimentally 1s not usually the case. Second, they
neglected the complicating effects of the interaction between shock
waves and boundary layer at the tunnel walls so that the problem could
be more easily analyzed. This, in itself, is not too serious an omisslon
because large portions of the boundary layer in transonic wind tunnels




2 NACA TN 3223

can be removed by porous suction, and its removal 1is beneflclal from the
standpoint of boundary-layer interaction effects and probably power
requirements. However, nelther report mrkes allowance for the applica-
tlon of wall suction which is required to remove the boundary layer nor
other possible effects related to wall suction.

In reference 1 charts are presented which describe the wall poroslty
required for complete shock-wave absorption in the absence of boundary
layer. Additional charts obtained by grephical methods enable the deter-
mination of reflected shock-wave strengths. For the general case, these
charts are based on an assumed linear relation between pressure differ-
ence across the wall and flow normal to the wall, and in two other specific
cases are based on the experimental characteristics of two porous mate-
rials having nonlinear flow relations.

In reference 2 a linear relation for the porous wall 1s also assumed.
This report differs from reference 1 in that an approximate explicit
solution for the strength of the reflected shock wave is presented as
well as an equation describing shock-wave cancellation conditions.

In the present report a generalized exponential relation between
pressure difference and normal flow is assumed which adequately describes
porous-wall calibrations obtained experimentally at the Ames Laboratory
and those presented in references 1 and 3. On this basis, conditions for

oblique shock-wave cancellation and reflection are derived. All results
have provisions for use of an arbitrary amount of wall suction.

SYMBOLS

a speed of sound

B}— constants dependling on porous-wall characteristics

Po~Pg

D suctlion pressure-difference ratio, 5
1~ Yo

E 1+0D

K dimenslonless porosity factor

M  Mach number

ni} exponents depending on porous-wall characteristics, n = % -1

P-p, p-p,
P pressure coefficient, or
% 9
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o] static pressure

q dynamic pressure

R perfect-gas constant

T absolute temperature

V  veloclty along streamline

v  velocity perpendicular to free stream

vp Vveloclty normal to porous wall

a@ Mach angle, sin'1<%‘{->

B MZ -1

y ratlio of specific heats (1.4 for air)

5 equlvalent wedge angle

6@ angle of shock wave

v angle between free stream and porous wall

e} density
Subscripts

0 upstream of initial shock wave

1 downstream of initlal shock wave

2 Jdownstream of reflected shock wave
¢ cancellation conditions

i initial suction

r reflectlion conditions

¥  tank enclosing test section

8 suction

' conditions at same pressure difference as K
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ANATYSIS

The purpose of this analysis is to relate the flow conditions of
oblique shock waves to the flow characteristics of porous walls, based
on the assumption that no boundary layer due to the tunnel walls is
present. Thlis situation will exist only if the boundary layer is removed
by porous-wall suctlon, and therefore suction will be considered in the

analysis.

It is first necessary to define the boundary condition. It is
assumed that pressure drop through the porous medium follows the exponen-
tial relation

P - p, = Blovy)" (1)

For convenience, equation (1) can be written as

1-m
pvp 1 o 1 n
20, pi/m (p - py) eV (P - py)

or in dimensionless form a porosity factor, K, can be defined such that

c o 2alPoto c< P’pt>n (2)

 (p-py) /p, Po

By use of the perfect-gas law

pvy /RT
K=—2> /29 (2a)
P-py¢ 7

which 18 & convenient form for computing K from experimental data.
The constants of equations (1) and (2) are related by

= (3"
poao B

This definition of a porosity factor, K, was first presented in refer-
ence 1 in a slightly different form. It can be interpreted as the
gbility of a porous medium to pass air per unit pressure difference.

Cc =
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Shock-Wave Cancellation

For purposes of analysis, it is convenlient to begin with the case
of no suction applied to the porous walls, although this is entirely
hypothetical since, in the absence of suction, a boundary layer will
exlst at the wall. In actuallity, as the suctlon is increased, the con-
ditlons shown in flgure 1 will be more nearly approached.

The porosity factor, K, requlred for cancellation of an oblique
shock wave can be determined by considerling the flow changes through the
impinging shock wave. For shock cancellation without suction (v=0), con-
ditions in region (1) of figure 1 must be maintained at the wall down-
stream of region (1), and &, becomes zero. From oblique-shock-wave
relations (ref. 4)

p_l—__tilil__. (3)
Po
tan(6,-8,)
Vi _ Mo tan B, ()
8 1+ tan 5; ten 6,
and
2
P, "Po _ M= tan 81 tan 91 (5)
Po 1+ tan 81 tan 61

Therefore, the porosity factor, K, for cancellation becomes (egs. (3),
(4), and (5) substituted into the definition of K)

pvh/boao P1V4 /Po8o

Ke = -
(p-py)/P0  (py-P,) /pg
or
Ke = ESE£E&:§£Z (6)
™Mo

when Dy = Pg end V=0 (no initial suction). Since 6, depends only
on 8, and My, Ke and (Pl"Po)/Po are uniquely determined when 3, and M,
are specified. In figure 2, K. 1is plotted as a function of (pl-po)/p0
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(egqs. (6) and (5), respectively), both for constant values of deflection
angle and Mach number. This type of plot is convenlent because porous-
wall calibrations can be superposed directly onto this grid of cancella-
tion conditions as 1ls shown in the figure. It is apparent that if the
porosity of a particular wall is specified by equation (2), then for any
free-stream Mach number, My, cancellation can occur at only two values
of &, at the most, and generally Just one. This restriction can be
removed by the use of wall suction.

For the case of shock-wave cancellation with wall suctlon, the
definltion of K becomes

plvnl/poao B pljlsin(81+v) P,

s =
(p,-p.) /p, (p,~py)  Polo

or

PV, COS V + PV, €08 8PV, /O Vo P

s (7

I

Kes
(p1-Po) + (Po-Py)

Using equation (3) and the oblique-shock-wave equation

vV, cos 6, (8)

—

Vo cos(6,-8,)

equation (7) can be written as

Ko cos v + DKg sin 6, cos &,/sin(6,-8,)

Keg = (9)
1+D

where
D = 20P%
P, P
and

PoVo sin v/poao povno/poao
s = = (10)

(po-Psi) /2o (py-py) /og

vhich defines the porosity factor for suction alone. In the above equa-
tions Pyvy,, represents the mass outflow per unit area through the
porous walls for a given suction pressure differential, PPy It is
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seen that K.g from equation (9) as well as Ke from equation (6) are
polint functions, and therefore cancellatlion can be achieved by all wall-
calibration curves passing through these polnts, irrespectlive of their
exponents of flow, n. Since (from eq. (2)),

. \I
Keg = C (pl pt>
Po

n
Ky = c(m)

and

Po
equation (9) can be written as

n+ sin 6, cos B C
(1 + D) T 1 1ptl - 2 cos v = X cos V (11)
8in(6,-5,) C k!

for D >0 and Cc/C < 1. Equation (11) specifies the amount of suction
pressure differential requlred to achleve shock-wave cancellation. It
can be seen from equation (11) that for a particular wall calibration
determined by C and n, cancellation can now be obtained over a range of
Mo and &,, provided the wall suction, D, 1s varied in accordance with
this equation. For the approximate case of &, and v approaching zero,
equation (11) becomes

n+1 o+l Ce

(1L + D) -D == (12)

Since equation (12) cannot be solved explicitly for D, the equation has
been plotted in figure 3 with n as the parameter for the range of O
to -0.5 (m = 1 to 2).

Shock-Wave Reflection

In the previous section the porosity factor required for shock-wave
cancellation with suction was specified. It was shown that for a given
porous wall, any shock wave for which CC/C < 1 can be canceled when
suction is used. For Cc/C > 1, impinging shock waves will be reflected
as shock waves of reduced intensity. It is the purpose of this section
to determine the reflected wave strength (82 or Pa'Pl) as a function of
the porous-wall characteristics with suction. For this case the porosity
factor for reflection (Kpg) can be expressed as a function of conditions
in region (2) of figure 1.
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PoVna/Poto - PV, Bin [(8,-8,) +v] p,

Krs =
(po=py) /o, (p,-p,) + (P,-py)  Pofo
or
Kpg = PV, CO8 ¥V + DoVy, cos(sl—sz)pevz/povo Do (13)
(p,-p,) + (pg-py) PoBo

By use of equations (3) and (8),1 equation (13) can be written as

Ky P_.-D Kg sin 6, sin 6
- 2 "1 Jeos V+ —D L __ cos(5,-B
Krs. Ko\ pl-pc,) Ke ~ sin(6,-5,) sin(6,-5,) (01-5;)
Ke p_-D
14+D+ 22
P, P
(1)

But K 1is the poroslty factor for reflection without suction and can
be expressed as

p.V._ sin(6.-5.) p_V_ sin(5,-5,) P,-Pp
Ky = 22 12 o _ Ke 2 2 12 1°0 (15)

Po2o P,"Py PV, sin 8,  P,-Pg

or, using equations (3) and (8), equation (15) becomes

sin 6, sin(5,-5.)
Kr = Ke 2 172 L (16)
sin(6,-5,)sin &3 - PP,
P,-Py

Equations (14) and (16) can be combined to give

K sin 6
sin 6, [sin(&l-sg) cos V4 BD —1 cos(Bl—Sz):l

Krs _ 5in(6,5,) | sin &, Ko sin(6,-5,) (17)
Ke p_-P
1+ D+ 2L
1 Po

1Tt is to be noted that equations (3), (4), (5), and (8) apply to
region (2) when the appropriate subscripts are used.
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By use of equation (5) and appropriate subscripts, equation (17) becomes

sin 6 sin(5,-5.) K sin 6
2 179 8 1
Krs 81n(6,-5,) [ s 5, °® V' & D ginfe, s,y °°°®: 52)] (18)
= i l
Ko
sin & cos 9 sin 0
1+D+ 2 % 2

sin 8, sin(9,-5,) cos(6,-5,)

Equation (18) expresses the porosity factor for reflection as a function
of the reflected wave strength, &, (6, is a function of &, and M,).

It is more useful, however, to obtain 8, as a function of C, n, and
the initial wave strength. By equation ?2)

— Y ——

Krs _ C (P2Pg\" _ C l:(pz-pl) + (p,-pg) + (po-pt)]n

Ke  Ce \P,-pg Ce P17Pg
or
K. Cc p.-p, T#
_I:_B.=_|:(1+D)+_§__-l-.:| (19)
Noting that
- n
Ks _ C (PoPg) _ C pm (20)
KC CC pl-po CC

the substitution of equations (19) and (20) into equation (17) gives

sin 6, sin(Bl—Sa)

cos ¥V
c K 8in(6,-5,) sin 8,
Ce B Xe n+l1
p s
(1 I N _.p+1_ sin 6 sin 6, cos(8,-5,)
P, -Pg s1n(65-8,) sin(6,-5,)
(21)

where XK' 1s a point on the real calibration curve at the value of
(p - Pt)/Po corresponding to K. (see fig. 2). Equation (18) becomes
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sin 6, 8in(8,-3,)

Cc K sin 52 cos 6, sin 6; T _nea_sin 6 sin 6; (5. -5.)
1+ D)+ - COB
i_( 8, sin(e,-8,) coe(@a—BE)J s1n(8,-8,) £in(6,-8,) e

If the wall angle, v, 1s sufficlently small so that cos val, equation (22) permits 8, to be
determined as a function of C (or K') by graphical inversion with 8,, n, and D as parameters.
It 1s to he noted that C represents the callbretlon curve of the real wall under consideration;
whereas Cg represents an imaginary caellbretion curve passing through eny point K, with the
pame exponent n as the real wall. For exemple, let the characterlistlcs of the porous medlium
under conslderation he represented by the real we.ll ealibration curve shown 1in figure 2. If the
incident wave, K,1, has a deflection angle of 1° at My = 1.20, then the lmaginary curve le the
deshed lins passing through polnt KeT parallel to the real calibration curve. Points Ker and
Krr are calculeted as examples in the appendix.

To determine an approximate explicit sclutlon for the reflected wave s'l:reng‘l:h, it s first
assumed that 5., (p,-p,)/(p,-P,), and A@ are small compared to unity where 6, = a; + AS.
Then, by use of 'bhe *inomial series, neglecting squared terms of amall qua.ntities, and letting
E = 1 + D, the pressure term of equation (21) becomes

Po-p, \O+F1 P,=P
<E+ 2 1) nEn+1<1+P-+—l-2_-L+...)

Pl 'PO E P]_ -PQ

so that equation (21) becomes

K 1 o+l Po~Py
X g0t (1 ) 1-8, cot 5, + B,8y)cos v +

Eppo

nrr KV sin 8, cos &, l:
KC BZLU.(QJ_—S:L) 1+ Bz(ta.n Bl + B:L) (23)

£3et NI VOVN



The pressure term can be approximated by

Po-P; 8in 8, cos 9, sin 6, B, cos 6, (2h)
P,"P, sin B, sin(6,-8,) cos(6,6,) B,sin(6;-8,)sin &,

Inserting equation (24) into equation (23) and solving for &,, we obtain

gin 8
Blsin(el-ﬁl)sin 8, I:cos v - %(En"'l - Dm'l ————2— coB 81>:]

sin(6,-8,)
e K! n p* ltan 6,8in &,
B, cos Vv sin(9,-B,)(cos B,-p,8in 8,) + =— (n+1)E cos &, |1-B; —— (sin B,+p,coe 8,)
Ke L B2 () d
(25)

Equation (25), therefore, 1s an approximate solution for the reflected wave stremgth (8,) when 1t
i1s emall compared to the initlal wave. As a further approximastion, &, can be assumed to approach
zero and cos ¥ = 1. Then equation (25) becomes

5, [1 - %(En+1 _ Dn"'l)}

&, = , (26)
1+ %_c EM(n+l)

The pressure coefficient of the reflected wave can be wrltten to a first approximetion as
(ref. 4, p., 134)

2
Po-P; 93 PP, - PV B,

a, 9 Qq; PVo? By

Pr =

or by use of equations (3) and (8)
2 gin 26,

= 8
B, sin 2(6,-8,) =

(27)

Pr

£32t WL VOVN



Equations (25) and (27) can be combined to give
Py =

' gin O
sin 26, sin &, ||:cos y - K_(En+1 _ DL 1

, = cOB 51\]
Ke \ sin(6,-5,) /1

D™ 4an 8, 8in B,
ER(n+l)

cos(6,-5,) {ﬁl cos v 81n(6,-8,) (cos 8, -p, 8in 5,) + % (n+1) E%cos 61[1 - B,

(28)
When B8,—>0 and cos v = 1 as for equation (26),

I wvr f o RN
2oy 1 - (- 0™
r-

Bo [1 + % En(ml)]

P

(29)
With no suction (D = 0), (Ko-K')/Ke 18 of the same order as Pr or By, so that equations (26)
and (29) become

5, = nlKeK') Ko B AK/K:

n o+ 2 n+ 2 (30)
and
25, AK
Pp = __;___/LK.E (31)
Bo(n+2)

In equations (25) to (31), a positive value of 8, or Pr represents a compressive reflection and a
pegative value an expansive reflection. A typleal value of AK 1is 1ndicated in figure 2.

(sin 6,+B, cos 81)]}

€22t NI VoVN
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In the foregoing equatlons allowance has been made for the use of
suction. Since the amount of air to be removed (Povpe)by suction alone
1s a predetermined factor, the suction pressure differential Po-Py, and,
therefore, D may be obtained by using equation (2) in the form

1
L
Py-Pg - .1‘. povno ( 39)
Pg C Pogo
DISCUSSION

For the practical application of the equations developed In this
paper, it is necessary first to obtain experimental data on the charac-
teristics of the porous wall under conslderation; that 1s, determine C
and n of equation (2). On the basis of reference 5, C and n would be
expected to be a function of the free-stream veloclty and secondary fac-
tors such as Reynolds number. Since T, 1is a function of free-stream
Mach number and total temperature, K and hence C and n are easily deter-
mined by the remaining measurable quantities of equation (28).

In the most general form without any simplifying assumptions, equa~
tion (22) relates the porous-wall characteristics (K, C, and n) to the
reflected wave strength (5,). As previously stated, b, can be deter-
mined, for a glven wall calibration and suction, by graphical inversion
when cos Vv = 1. Equations (26) and (29) give explicit solutions for
the reflected wave strengths in their most approximate form with suction.
When &, in equation (22) is made equal to zero, equation (11) is
obtained, which relates the porous-wall characterlistics and incident
wave strength, p,-p,, to the suction for cancellation. By definition,
the porosity fac%or through which a wall callbration curve must pass for
shock cancellation with wall suction is given by equation (9), where X.
is related to the incident shock wave by equation (6).

In reference 3 the effect of suction on the sign and magnitude of
reflected disturbances is discussed, and 1t is pointed out that suction
tends to make a porous wall appear more closed. This effect can be
observed in figure 2, since K for the calibration curves decreases
wlth Increaslng pressure difference. In reference 3 it was also indi-
cated that, with a single porous wall, a selected amount of suction can
produce cancellation over a range of incident waves and Mach mumbers
which otherwlse would result in reflectlons. As an example, let Ka7p
in figure 2 represent a polnt for cancellation of an incldent wave with-
out suction. According to equation (30) or (31), an expansive reflec-
tion will result in proportion to (KcII‘K'II)/KcII: which is negative.
Then equation (12) allows an approximate computation of D and hence
(p0~pt), which is the wall suction required to cancel the reflected wave.
In the more general case, an initial amount of suction, Do=Pti» WBY be
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used which does not achleve complete cancellation of the reflected wave,
as indicated in the figure by Xcgi. Then the additional amount of suc-
tion required to make this point coincide with KegIT 18 (pgi-Py). It
is to be noted that the point Kggi may be above the real calibration
curve, in which case the suctlion must be reduced in order to achieve
cancellation. In summary, suction translates points on the cancellation
grid of flgure 2 to the right and up, which results in & more solid
effect of the porous medium. Calculations for these examples are given
in the appendix, example II.

Since the analysis of this report was based on two-dimenslonal rela-
tions, the question arises as to the possibility of applying these rela-
tions to three-dimensional flows. In references 6 and 7 it was shown
that for a given pressure ratio and bow-wave angle, there is both a
wedge and a cone that can produce these conditions. This simply means
that the flow immediately behind a conical bow shock 1ls essentially two-
dimensional. If this result 1s assumed to apply to a curved three-
dimensional bow wave, then it is possible to represent this three-
dimensional shock disturbance by an equivalent two-dlimensional disturb-
ance at the tangent polnt of the waves. This 1s shown schematically in
the lower left of figure 2. 1In practice, this procedure amounts to
determining the wave strength near the wall of a three-dimensional body
either by direct measurement or the method of characteristics (when
applicable), and then selecting a two-dimensional deflection angle to
correspond to the three-dimensional pressure rise. A result of this
procedure by direct measurement is shown in figure 2 for a fineness
ratio 12 body of revolution (RM 12) which amounted to O.34k-percent
blocked area in a 5- by 5-inch transonlc test section. This curve was
obtained by measuring the pressure changes, (Pl'Po)/Po’ through the bow
wave near the wall and plotting these values at the appropriate Mach
numbers in figure 2. This is equivalent to computing K. from equa-
tion (6) and plotting it at the proper value of (p,-P,)/p,. This pro-
cedure when applied to more complex bodies at various angles of attack
can provide information as to the range of wall porosities that is
needed for approximate interference-free testing of three-dimensional
models.

Ames Aeronautical Leborstory
National Advisory Commlittee for Aeronsutics
Moffett Field, Calif., May T, 1954
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APPENDIX

NUMERICAL EXAMPLES

Example I.- Calculation of Coordinates for Points
KoT and Ky 1in Figure 2

Glven:
MO = ln20
8, = 1.0°

6, = 58.6° (from oblique shock relations, ref. 4)

No suction (D = O)

- =0 «40
Wall calibration, K = 0.103 ( 3}#)
o

To find Ka

From equation (6)

cot(6,-5,)  cot(58.6-1.0)
Mo 1.400 x 1.200

Kol = = 0.378

From equation (5)

Py-Po _ 7Mo"tan 8ytan 6, 1.400 x 1.440 X 0.01745 x 1.638
Py l+tan &, tan 6, 1+0.01745 x 1.638

0.0560

Using the wall calibration

- -0 .40
K'y = 0.103 (%31) = 0.103(0.0560) "°**° = 0.326

o

To £ind Kpy:

From oblique shock relations, M; = 1.160. Then, for D = 0, equation (28)




16 NACA TN 3223

becomes

sin 26, sin 6, [(Ke-K') /K]

cos(6,-5,) [Blain(el-‘él)(cos 8,-pB, 8in 81) + -g—; (n+1)cos 61]

0.889 x 0.0175 [(0.378 - 0.326) /0.378]
= =0.00329

0.536[0.588 x 0.844(1.00-0.588 x0.0175) +0.862 x1.60 x0.521]

and

P,"Py 27
Py 2

Mo2 Ppr = 0.700X1.44X0.00329 = 0.0033

Therefore,

-p
= + 2p L = 0.0560 + 0.0033

o) o

0.0593

D-Dy

= -0.40
Po

-0.40
> = 0.103(0.0593) = 0.319

Kpr = 0.103 (

If suction were applied to the porous walls for the above example, the
reflection strength, P, would become greater.

Example II.- Calculation of Suction Pressure Differential
Required to Achieve Cancellation

Given:
My = 1.10
5, = 1/2°
Kerr = 0.278
(py-Po) /oo = 0.0347

computed similser to example I

>-0-4O

p—Pt
Wall calibration, K = 0.103 D
o
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Since &, 1s small, equation (12) (fig. 3) can be used to calculate
the suctlon pressure differential, (Po'Pt)/Po’ required to attain cancel-
lation. It is first necessary to determine C¢/C which depends on Krp'
From the wall callbration

Kyp' = 0.103(0.0347) 7% =0.395

Then
Cc Ke 0.278

= —

T K 0.39

and from figure 3
D = 00258
Therefore, the suction pressure differential required is

Po-Py _ P, ~Py
Py Po

D = 0.0347%x0.258 = 0.0090

Since

PPy PiPo PoPy

Po P Po

= 0.0347 + 0.0090 = 0.0437

K77 = 0-103 (0.0437)7°** = 0.360

If an initial suction pressure differential, which does not produce
cancellation, is imposed on the test-section walls, the additional suc-
tion required, (pii-pi) /Py, cen be determined as follows:

Let (p,-Di1)/Po = 0.0050 be the initial suction. Then

Pt17Py _PoPt PoPti

= 0.0090 - 0.0050 =0.0040
P, T, D 9 20

o

The point Kegis corresponding to the initial suction, can be computed
as follows:

From the wall callbration
Kgy = 0.103(0.0050)7°"*° = 0.858
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0.0050
Dy = =22 = 0.14h
1 0.0347

Using equation (9) for 8,—>0

Kerr + D3Kgy _ 0.278+0.144x0.858

Kesi =
1+ Dy - 1+ 0.1hk

= 0.353

and

= 0.0347 + 0.0050 = 0.0397
Po pO pO
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Figure [. = Condltions for shock—wave reflection from a porous wall without

boundaory layer.
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